Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Small ; 20(14): e2307664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37972254

RESUMO

Phototheranostics continues to flourish in cancer treatment. Due to the competitive relationships between these photophysical processes of fluorescence emission, photothermal conversion, and photodynamic action, it is critical to balance them through subtle photosensitizer designs. Herein, it is provided a useful guideline for constructing A-D-A photosensitizers with superior phototheranostics performance. Various cyanoacetate group-modified end groups containing ester side chains of different length are designed to construct a series of A-D-A photosensitizers (F8CA1 ∼ F8CA4) to study the structure-property relationships. It is surprising to find that the photophysical properties of A-D-A photosensitizers can be precisely regulated by these tiny structural changes. The results reveal that the increase in the steric hindrance of ester side chains has positive impacts on their photothermal conversion capabilities, but adverse impacts on the fluorescence emission and photodynamic activities. Notably, these tiny structural changes lead to their different aggregation behavior. The molecule mechanisms are detailedly explained by theoretical calculations. Finally, F8CA2 nanoparticles with more balanced photophysical properties perform well in fluorescence imaging-guided photothermal and type I&II photodynamic synergistic cancer therapy, even under hypoxic conditions. Therefore, this work provides a novel practicable construction strategy for desired A-D-A photosensitizers.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/química , Nanomedicina Teranóstica/métodos , Fotoquimioterapia/métodos , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Ésteres/uso terapêutico
2.
J Med Chem ; 66(22): 15493-15510, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37949450

RESUMO

The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) exhibits remarkable anticancer efficacy; however, its therapeutic potential is hindered by its toxicity to gastrointestinal (GI) tissues. We recently reported the discovery of DRP-104, a tumor-targeted DON prodrug with excellent efficacy and tolerability, which is currently in clinical trials. However, DRP-104 exhibits limited aqueous solubility, and the instability of its isopropyl ester promoiety leads to the formation of an inactive M1-metabolite, reducing overall systemic prodrug exposure. Herein, we aimed to synthesize DON prodrugs with various ester and amide promoieties with improved solubility, GI stability, and DON tumor delivery. Twenty-one prodrugs were synthesized and characterized in stability and pharmacokinetics studies. Of these, P11, tert-butyl-(S)-6-diazo-2-((S)-2-(2-(dimethylamino)acetamido)-3-phenylpropanamido)-5-oxo-hexanoate, showed excellent metabolic stability in plasma and intestinal homogenate, high aqueous solubility, and high tumor DON exposures and preserved the ideal tumor-targeting profile of DRP-104. In conclusion, we report a new generation of glutamine antagonist prodrugs with improved physicochemical and pharmacokinetic attributes.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/química , Diazo-Oxo-Norleucina/farmacocinética , Glutamina , Ésteres/uso terapêutico , Neoplasias/tratamento farmacológico
3.
Phytomedicine ; 121: 155131, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806155

RESUMO

BACKGROUND: Liver cancer is a topical global health issue. The treatment of liver cancer meets significant challenges in the high recurrence rate and invasive incidence. Therefore, the treatment strategies that target epithelial-mesenchymal transition (EMT) induced by cyclooxygenase 2 (COX2)/ prostaglandin E2 (PGE2) pathway have become epidemic. Ginsenoside Rh2 has been proved to inhibit the EMT. However, the underlying mechanisms remain unclear. Moreover, the octyl ester derivative of Rh2 (Rh2-O) exhibited superior anti-proliferative and immunomodulatory effects than Rh2 in our previous researches, which indicated that Rh2-O might also exert inhibitory effects on invasion and metastasis. PURPOSE: The aim of current study is to explore the inhibitory effects of Rh2 and Rh2-O on invasion and metastasis of hepatocellular carcinoma, and to investigate whether these effects are dependent on the c-Jun/COX2/PGE2 pathway. STUDY DESIGN: The Huh-7 liver cancer cells and the H22 tumor-bearing mice were treated with Rh2 and Rh2-O. METHOD: In this paper, the inhibitory effects of Rh2 and Rh2-O on invasion and metastasis were tested by wound healing, trans-well assay and tumor-bearing mice, and the involvement of c-Jun/COX2/PGE2 pathway were verified by exogenous PGE2, activation of COX2 and overexpression of c-Jun. RESULTS: The results showed that Rh2 and Rh2-O could efficiently inhibit the invasion and metastasis in a dose-dependent manner (p < 0.05). And the Rh2-O showed stronger effects than Rh2. Moreover, the exogenous PGE2, activation of COX2 by exogenous LPS and the overexpression of c-Jun by transfection all reversed the inhibitory effects of Rh2 and Rh2-O on metastasis or EMT (p < 0.05). CONCLUSION: Rh2 and Rh2-O could inhibit the invasion and metastasis of hepatocellular carcinoma via restraining the EMT, which was mediated by c-Jun/COX2/PGE2 pathway.


Assuntos
Carcinoma Hepatocelular , Ginsenosídeos , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Dinoprostona/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Ciclo-Oxigenase 2/metabolismo , Ésteres/uso terapêutico , Ginsenosídeos/metabolismo , Linhagem Celular Tumoral
4.
Nucleic Acids Res ; 51(16): 8413-8433, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37462077

RESUMO

Genotoxicants have been used for decades as front-line therapies against cancer on the basis of their DNA-damaging actions. However, some of their non-DNA-damaging effects are also instrumental for killing dividing cells. We report here that the anthracycline Daunorubicin (DNR), one of the main drugs used to treat Acute Myeloid Leukemia (AML), induces rapid (3 h) and broad transcriptional changes in AML cells. The regulated genes are particularly enriched in genes controlling cell proliferation and death, as well as inflammation and immunity. These transcriptional changes are preceded by DNR-dependent deSUMOylation of chromatin proteins, in particular at active promoters and enhancers. Surprisingly, inhibition of SUMOylation with ML-792 (SUMO E1 inhibitor), dampens DNR-induced transcriptional reprogramming. Quantitative proteomics shows that the proteins deSUMOylated in response to DNR are mostly transcription factors, transcriptional co-regulators and chromatin organizers. Among them, the CCCTC-binding factor CTCF is highly enriched at SUMO-binding sites found in cis-regulatory regions. This is notably the case at the promoter of the DNR-induced NFKB2 gene. DNR leads to a reconfiguration of chromatin loops engaging CTCF- and SUMO-bound NFKB2 promoter with a distal cis-regulatory region and inhibition of SUMOylation with ML-792 prevents these changes.


Assuntos
Daunorrubicina , Leucemia Mieloide Aguda , Humanos , Daunorrubicina/farmacologia , Daunorrubicina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Ésteres/uso terapêutico , Cromatina/genética
5.
Rev Bras Parasitol Vet ; 32(3): e004023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37466625

RESUMO

In dogs, Rhipicephalus linnaei transmits pathogens such as Ehrlichia canis, Babesia vogeli, and Hepatozoon canis. The veterinary market has synthetic acaricides to ticks control. Esters derived from castor oil are efficient. However, there is little information about their effects on non-target organisms. This work consisted of a clinical (AST, ALT, and ALP) and histological and histochemical analysis (liver and spleen) of female rabbits exposed to these esters and afoxolaner. The rabbits were divided into three groups: control group (CG) received Bandeirante® rabbit feed; the afoxolaner treatment (TG1) received rabbit feed and two doses of afoxolaner; castor oil esters treatment (TG2) received rabbit feed enriched with esters (1.75 g esters/kg). No alterations were observed in the AST, ALT, and ALP enzymes in exposure to esters TG2. Rabbits from TG1 showed changes in AST. The liver of rabbits exposed to afoxolaner underwent histological and histochemical changes, such as steatosis and vacuolation, as well as poor protein labeling. Polysaccharides were intensely observed in the group exposed to esters. The spleen showed no changes in any of the exposure. Esters from castor oil caused fewer liver changes when incorporated into the feed and fed to rabbits than exposure to afoxolaner.


Assuntos
Acaricidas , Doenças do Cão , Rhipicephalus sanguineus , Rhipicephalus , Feminino , Coelhos , Animais , Cães , Óleo de Rícino/química , Óleo de Rícino/farmacologia , Óleo de Rícino/uso terapêutico , Acaricidas/farmacologia , Baço , Ésteres/farmacologia , Ésteres/uso terapêutico , Fígado , Doenças do Cão/parasitologia
6.
J Med Chem ; 66(6): 4150-4166, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36867101

RESUMO

ProTide and cyclic phosphate ester are two successful prodrug technologies to overcome the limitations of nucleoside drugs, among which the cyclic phosphate ester strategy has not been widely used in the optimization of gemcitabine. Herein, we designed a series of novel ProTide and cyclic phosphate ester prodrugs of gemcitabine. Cyclic phosphate ester derivative 18c exhibits much higher anti-proliferative activity than positive control NUC-1031 with IC50s of 3.6-19.2 nM on multiple cancer cells. The metabolic pathway of 18c demonstrates that 18c's bioactive metabolites prolong its anti-tumor activity. More importantly, we separated the two P chiral diastereomers of gemcitabine cyclic phosphate ester prodrugs for the first time, revealing their similar cytotoxic potency and metabolic profile. 18c displays significant in vivo anti-tumor activity in both 22Rv1 and BxPC-3 xenograft tumor models. These results suggest that compound 18c is a promising anti-tumor candidate for treating human castration-resistant prostate and pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Pró-Fármacos , Masculino , Humanos , Gencitabina , Fosfatos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Organofosfatos , Ésteres/uso terapêutico , Linhagem Celular Tumoral
7.
ACS Appl Bio Mater ; 5(11): 5432-5444, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36318654

RESUMO

Exploiting aromatic π-interaction for the stabilization of polyaromatic anticancer drugs at the core of the polymer nanoassemblies is an elegant approach for drug delivery in cancer research. To demonstrate this concept, here we report one of the first attempts on enzyme-responsive polymers from aryl-unit containing amino acid bioresources such as l-tyrosine and 3,4-dihydroxy-l-phenylalanine (l-DOPA). A silyl ether protection strategy was adopted to make melt polymerizable monomers, which were subjected to solvent free melt polycondensation to produce silyl-protected poly(ester-urethane)s. Postpolymerization deprotection yielded phenol- and catechol-functionalized poly(ester-urethane)s with appropriate amphiphilicity and produced 100 ± 10 nm size nanoparticles in an aqueous solution. The aromatic π-core in the nanoparticle turns out to be the main driving force for the successful encapsulation of anticancer drugs such as doxorubicin (DOX) and topotecan (TPT). The electron-rich catechol aromatic unit in l-DOPA was found to be unique in stabilizing the DOX and TPT, whereas its l-tyrosine counterpart was found to exhibit limited success. Aromatic π-interactions between l-DOPA and anticancer drug molecules were established by probing the fluorescence characteristics of the drug-polymer chain interactions. Lysosomal enzymatic biodegradation of the poly(ester-urethane) backbone disassembled the nanoparticles and released the loaded drugs at the cellular level. The nascent polymer was nontoxic in breast cancer (MCF7) and WT-MEF cell lines, whereas its DOX and TPT loaded nanoparticles showed remarkable cell growth inhibition. A LysoTracker-assisted confocal microscopic imaging study directly evidenced the polymer nanoparticles' biodegradation at the intracellular level. The present investigation gives an opportunity to design aromatic π-interaction driven drug stabilization in l-amino acid based polymer nanocarriers for drug delivery applications.


Assuntos
Antineoplásicos , Neoplasias , Portadores de Fármacos/química , Uretana/uso terapêutico , Aminoácidos/uso terapêutico , Ésteres/uso terapêutico , Fenol/uso terapêutico , Levodopa/uso terapêutico , Doxorrubicina/química , Polímeros/química , Antineoplásicos/farmacologia , Fenóis/uso terapêutico , Catecóis/uso terapêutico , Neoplasias/tratamento farmacológico
8.
Immunol Lett ; 251-252: 9-19, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183900

RESUMO

Rosmarinic acid is a polyphenolic compound, abundantly present in herbs of the Lamiaceae family. The aim of the study was to evaluate the immunomodulatory properties of a recently developed phenethyl ester derivative of rosmarinic acid (PERA), with enhanced ability of diffusion through biological membranes, in an animal model of the central nervous system (CNS) autoimmunity. To this end, experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis was used. Daily subcutaneous administration of PERA (30 mg/kg) from day 7 to day 22 after immunization successfully ameliorated EAE induced in Dark Agouti rats, shortening the disease duration and reducing maximal, cumulative and mean clinical score. PERA efficiently reduced production of major encephalitogenic cytokines, interferon (IFN)-γ and interleukin (IL)-17, in immune cells from the CNS or the lymph nodes draining the site of immunization of EAE rats, as well as in CD4+ T cells purified from the lymph nodes. Also, PERA inhibited NO production in the CNS and the lymph nodes, as well as in macrophages and microglial cells. Finally, microglial ability to produce pro-inflammatory cytokines IL-6, and tumor necrosis factor (TNF) were also reduced by PERA. Our results clearly imply that PERA possesses anti-encephalitogenic properties. Thus, further studies on the relevance of the observed effects for the therapy of multiple sclerosis are warranted.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Ratos , Animais , Camundongos , Ésteres/uso terapêutico , Citocinas , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Ácido Rosmarínico
9.
Life Sci ; 310: 121007, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181863

RESUMO

AIMS: Malignant melanoma (MM) is the most fatal skin cancer with a critical increase in the number of cases in the last decades. Recent studies have shown the antitumor potential of active biological phytochemical structures of flavonoids for the prevention and treatment of cancerous cells. In this study, two quercetin fatty acid esters (α-linolenic acid (ALA) and linoleic acid (LA)) compounds were evaluated in terms of inducing apoptotic human melanoma cells (A375) death in vitro. MAIN METHODS: The MTT assay was utilized for comparing the effects of quercetin, ALA, and LA on A375 cell viability concentrations of 5, 25, 35, 50, and 100µg/mL for 24 and 48 h to obtain IC50. To detect the effects on apoptosis and to determine p-ERK/ERK apoptosis-related signaling pathway proteins level, flow-cytometry and western blot were used. Finally, the nano-mechanical properties of the melanoma A375 membrane structure containing elastic modulus value and cell-cell adhesion forces were investigated using Atomic Force Microscopy (AFM). Statistical data was analyzed in GraphPad v.8.0.0. KEY FINDINGS: The most significant A375 cell viability amplified effect of Q-LA was observed with a half-maximal inhibitory concentration (IC50 = 35 µg/mL, 48 h), proportional to dose. Ester compounds, especially Q-LA, showed the highest cell proliferation inhibition with improved elastic modulus, cell-cell adhesion forces (253 ± 11.2), and elevated apoptosis-inducing effect (p < 0.01**). Moreover, Q-LA significantly decreased the mean levels of p-ERK phosphorylation (0.1439) and, subsequently, apoptosis in A375 cells. SIGNIFICANCE: The data presented in this study confirmed the antitumor activity of ester compounds against A375 cells, high-lighting the ability of the tested compounds to induce apoptosis.


Assuntos
Melanoma , Quercetina , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Linhagem Celular Tumoral , Melanoma/metabolismo , Apoptose , Proliferação de Células , Ácidos Graxos , Ésteres/farmacologia , Ésteres/uso terapêutico
10.
Curr Drug Discov Technol ; 19(6): e110822207398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959613

RESUMO

BACKGROUND: The continuous increase in mortality of breast cancer and other forms of cancer due to the failure of current drugs, resistance, and associated side effects calls for the development of novel and potent drug candidates. METHODS: In this study, we used the QSAR and extreme learning machine models in predicting the bioactivities of some 2-alkoxycarbonylallyl esters as potential drug candidates against MDA-MB-231 breast cancer. The lead candidates were docked at the active site of a carbonic anhydrase target. RESULTS: The QSAR model of choice satisfied the recommended values and was statistically significant. The R2pred (0.6572) was credence to the predictability of the model. The extreme learning machine ELM-Sig model showed excellent performance superiority over other models against MDAMB- 231 breast cancer. Compound 22 with a docking score of 4.67 kcal mol-1 displayed better inhibition of the carbonic anhydrase protein, interacting through its carbonyl bonds. CONCLUSION: The extreme learning machine's ELM-Sig model showed excellent performance superiority over other models and should be exploited in the search for novel anticancer drugs.


Assuntos
Neoplasias da Mama , Anidrases Carbônicas , Humanos , Feminino , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Neoplasias da Mama/tratamento farmacológico , Ésteres/farmacologia , Ésteres/uso terapêutico , Anidrases Carbônicas/metabolismo , Aprendizado de Máquina
11.
J Control Release ; 349: 617-633, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868357

RESUMO

A hyaluronic acid (HA)-based one-pot hydrogel reactor with single syringe injection and immediate gelation was developed for starvation therapy (ST), chemodynamic therapy (CDT), ferroptosis, and photothermal therapy (PTT) against breast cancer. A rheologically tuned hydrogel network, composed of HA-phenylboronic acid (HP) and HA-dopamine (HD), was designed by introducing a boronate ester linkage (phenylboronic acid-dopamine interaction) and polydopamine bond (pH control). Ferrocene (Fc)-conjugated HP (Fc-HP) was synthesized to achieve ferroptosis, Fenton reaction-involved toxic hydroxyl radical (•OH) generation, and photothermal ablation in cancer therapy. Glucose oxidase (GOx) was entrapped in the pH-modulated Fc-HP (Fc-HP°)/HD hydrogel network for converting intracellular glucose to H2O2 to enable its own supply. The GOx/Fc combination-installed hydrogel reactor system can provide sustained ST/CDT/PTT functions along with ferroptosis. Injection of Fc-HP°/HD/GOx hydrogel with single-syringe injectability, shear-thinning feature, and self-healing capability offered a slow biodegradation rate and high safety profiles. Peritumorally injected Fc-HP°/HD/GOx hydrogel also efficiently suppressed the growth of breast cancer based on multifunctional therapeutic approaches with reduced dosing frequency. Hyperthermia induced by near-infrared (NIR) laser absorption may amplify the therapeutic effects of free radicals. It is expected that this Fc-HP°/HD/GOx hydrogel system can be applied to local cancer therapy with high efficacy and safety profiles.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Neoplasias , Ácidos Borônicos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Dopamina/uso terapêutico , Ésteres/uso terapêutico , Feminino , Compostos Ferrosos , Glucose/metabolismo , Glucose Oxidase/química , Glucose Oxidase/uso terapêutico , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/uso terapêutico , Metalocenos/uso terapêutico , Neoplasias/tratamento farmacológico
12.
Eur J Pharmacol ; 922: 174883, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341783

RESUMO

BACKGROUND & AIMS: Although the proteasome inhibitor bortezomib has greatly improved the clinical outcome of patients with multiple myeloma (MM), acquired drug resistance remains the greatest obstacle on the road of treating MM. We previously showed that omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) with the chemotherapeutic agent bortezomib can overcome its chemoresistance in MM cells. However, most DHA/EPA are esterified shortly after oral administration, which may affect their bioactivity. This study was to evaluate the cytotoxicity of ethyl ester-DHA/EPA in human MM cells. The mechanisms relevant for the cytotoxicity of these esterified-fatty acids were further investigated. METHODS: Human MM cell lines L363, OPM2, U266 were treated with ethyl ester-DHA/EPA with or without bortezomib. The percentage of dead cells and intracellular reactive oxygen species (ROS) levels were analyzed by flow cytometry. RESULTS: Ethyl ester-DHA and -EPA were much more potent than DHA/EPA to induce cytotoxicity in MM cells, even in DHA/EPA-resistant MM cells. Pretreating MM cells with esterified-DHA/EPA before bortezomib potently increased its cytotoxicity. Additionally, intracellular ROS levels were upregulated in MM cells after treatment with ethyl ester-DHA/EPA, which reflected the enhanced oxidative stress in treated cells. CONCLUSIONS: This study provides evidence that ethyl ester-DHA/EPA in combination with bortezomib may improve the overall efficacy in MM cells, similar to DHA/EPA, relieving the concern that esterification of DHA/EPA may affect its bioactivity and further supporting the potential clinical use of fatty acids DHA/EPA for combating drug resistance during MM therapy.


Assuntos
Ácidos Docosa-Hexaenoicos , Mieloma Múltiplo , Bortezomib/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/uso terapêutico , Ésteres/uso terapêutico , Ácidos Graxos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Espécies Reativas de Oxigênio
13.
Nature ; 603(7899): 25-27, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35233098

Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Ensaios Clínicos como Assunto , Reposicionamento de Medicamentos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Administração Oral , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/uso terapêutico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/economia , Anticorpos Neutralizantes/uso terapêutico , Antivirais/administração & dosagem , Antivirais/farmacologia , COVID-19/economia , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/virologia , Vacinas contra COVID-19 , Citidina/análogos & derivados , Citidina/uso terapêutico , Depsipeptídeos/farmacologia , Depsipeptídeos/uso terapêutico , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Combinação de Medicamentos , Sinergismo Farmacológico , Ésteres/farmacologia , Ésteres/uso terapêutico , Guanidinas/farmacologia , Guanidinas/uso terapêutico , Hospitalização , Humanos , Hidroxilaminas/uso terapêutico , Internacionalidade , Lactamas/uso terapêutico , Leucina/uso terapêutico , Camundongos , National Institutes of Health (U.S.)/organização & administração , Nitrilas/uso terapêutico , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Prolina/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , RNA Polimerase Dependente de RNA/antagonistas & inibidores
14.
Nanomedicine ; 39: 102461, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562656

RESUMO

An oral nanoparticle (NPs) encapsulated in chitosan/alginate hydrogel (CA-Gel) with dual-sensitive in pH and reactive oxygen species (ROS) was developed to load curcumin (CUR) based on the intracellular-specific characteristics of macrophages. Chondroitin sulfate (CS) wrapped PBAE-SA-PAPE with intracellular pH/ROS dual-sensitive characteristics and CUR via a simple nanoprecipitation method to form NPs (CS-CUR-NPs), and mixed CA-Gel to acquire the final preparation (CS-CUR-NPs-Gel). CS-CUR-NPs displayed an ideal average particle size (179.19±5.61nm) and high encapsulating efficiency (94.74±1.15%). CS showed a good targeting ability on macrophages and the CA-Gel contribution in protecting NPs from being destroyed in the upper gastrointestinal tract. As expected, CS-CUR-NPs-Gel could significantly alleviate inflammation in DSS-induced UC mice via TLR4-MAPK/NF-κB pathway. This study is the first to attempt to design a novel pH/ROS dual-stimulated release strategy in helping intracellular CUR delivery and anticipated for efficient anti-UC therapy.


Assuntos
Colite Ulcerativa , Curcumina , Nanopartículas , Animais , Sulfatos de Condroitina/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Ésteres/uso terapêutico , Concentração de Íons de Hidrogênio , Macrófagos/metabolismo , Camundongos , Tamanho da Partícula , Espécies Reativas de Oxigênio
15.
Curr Pharm Biotechnol ; 23(6): 760-765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34254911

RESUMO

BACKGROUND: Gliomas are highly malignant brain tumours with high resistance to chemotherapy. Therefore, investigations of new therapeutic molecules with high anti-glioma activity are of great importance. OBJECTIVES: In this work, biocatalytic esterification of terpene alcohols with proven anti-cancer activity was performed to enhance their potency to induce cell death in human glioblastoma multiforme T98G and anaplastic astrocytoma MOGGCCM cell lines in vitro. METHODS AND RESULTS: We used primary terpene alcohols and carboxylic acids with a length of two to nine carbon atoms. The structure of the alcohols had an influence on the esterification efficiency, which decreased in the following order: monocyclic > linear > bicyclic. Terpene alcohols and their esters only induced apoptotic cell death, which is highly desirable from a therapeutic point of view, but did not induce autophagy and necrosis. The esterification of perillyl alcohol with butyric acid caused a 4-fold increase in cell death induction in the T98G line. Citronellol valerate, caprylate, and pelargonate and myrtenol butyrate, caprylate and pelargonate also showed higher activity than their alcohol precursors. CONCLUSION: We have herein shown that esterification of natural alcohols by biocatalysis can be used for improving the activity of other compounds investigated for their anti-glioma activity.


Assuntos
Astrocitoma , Glioblastoma , Glioma , Astrocitoma/tratamento farmacológico , Biocatálise , Ésteres/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Terpenos/farmacologia , Terpenos/uso terapêutico
16.
J Ethnopharmacol ; 279: 114235, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34044081

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trichodesma indicum (L.) R. Br. (family: Boraginaceae) is a medicinal herb largely used to treat arthralgia, rheumatoid arthritis, wound healing, dysentery, etc. It's mechanism of anti-inflammatory activity has not been systematically analyzed yet. AIM OF THE STUDY: The present study was undertaken to examine the anti-inflammatory effects of successive solvent extracts (n-hexane extract (HE), ethyl acetate extract (EA), ethanol extract (EE), aqueous extract (AE) and fractions of HE) from the aerial parts of Trichodesma indicum (TI) against lipopolysaccharide (LPS) stimulated inflammatory reaction using mouse macrophage RAW 264.7 cells. MATERIALS AND METHODS: Cytotoxic effects of the extracts and fractions of TI were assessed by MTT assay. The effect of extracts and fractions on the production of nitric oxide (NO) in RAW 264.7 macrophages were measured using the Griess reagent method. IL - 6, IL - 1ß, TNF-α, iNOS and COX-2 gene expressions were examined by a qRT-PCR method. RESULTS: RAW 264.7 macrophages pretreated with HE, EA, EE and AE of TI showed a significant decrease in the production of proinflammatory cytokines and NO without exhibiting cytotoxicity. The potent HE was fractionated using flash chromatography into FA, FB, FC, FD and FE. Among the five fractions, FE displayed a stronger ability to reduce IL - 1ß, TNF-α, iNOS, COX2 and NO importantly no cytotoxicity was observed. The phytochemical compounds present in FE were further screened by Gas chromatography - Mass spectroscopy (GC-MS). GC-MS analysis revealed that 1,2-benzenedicarboxylic acid diisooctyl ester is the major compound in FE. Molecular docking analysis showed good inhibition of 1,2-benzenedicarboxylic acid diisooctyl ester against TLR-4, NIK and TACE. CONCLUSION: Our results suggested that 1,2-benzenedicarboxylic acid diisooctyl ester could be a potential candidate in alleviating inflammatory reactions in TI.


Assuntos
Anti-Inflamatórios/farmacologia , Derivados de Benzeno/farmacologia , Boraginaceae/química , Ácidos Carboxílicos/farmacologia , Ésteres/farmacologia , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Derivados de Benzeno/isolamento & purificação , Derivados de Benzeno/uso terapêutico , Ácidos Carboxílicos/isolamento & purificação , Ácidos Carboxílicos/uso terapêutico , Citocinas/metabolismo , Ésteres/isolamento & purificação , Ésteres/uso terapêutico , Cromatografia Gasosa-Espectrometria de Massas , Inflamação/patologia , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Células RAW 264.7
17.
J Med Chem ; 64(11): 7596-7616, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34019405

RESUMO

Cyclic dinucleotides (CDNs) are second messengers that bind to the stimulator of interferon genes (STING) and trigger the expression of type I interferons and proinflammatory cytokines. Here we evaluate the activity of 3',3'-c-di(2'F,2'dAMP) and its phosphorothioate analogues against five STING allelic forms in reporter-cell-based assays and rationalize our findings with X-ray crystallography and quantum mechanics/molecular mechanics calculations. We show that the presence of fluorine in the 2' position of 3',3'-c-di(2'F,2'dAMP) improves its activity not only against the wild type (WT) but also against REF and Q STING. Additionally, we describe the synthesis of the acyloxymethyl and isopropyloxycarbonyl phosphoester prodrugs of CDNs. Masking the negative charges of the CDNs results in an up to a 1000-fold improvement of the activities of the prodrugs relative to those of their parent CDNs. Finally, the uptake and intracellular cleavage of pivaloyloxymethyl prodrugs to the parent CDN is rapid, reaching a peak intracellular concentration within 2 h.


Assuntos
Ésteres/química , Proteínas de Membrana/agonistas , Fosfatos/química , Pró-Fármacos/síntese química , Cristalografia por Raios X , Teoria da Densidade Funcional , Ésteres/farmacologia , Ésteres/uso terapêutico , Células HEK293 , Humanos , Interferon gama/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacologia , Fosfatos/uso terapêutico , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
18.
Food Funct ; 12(5): 2171-2188, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33566044

RESUMO

The present study was designed to explore the beneficial mitochondrial effects and anti-oxidative activities of plant sterol ester of α-linolenic acid (PS-ALA) through AMP-activated protein kinase (AMPK) signaling in the treatment of nonalcoholic fatty liver disease (NAFLD) using in vivo and in vitro models. The mitochondrial function was evaluated and the oxidative stress index was measured. The protein expression was analyzed by immunohistochemical, immunofluorescence, and western blotting methods. The results showed that PS-ALA significantly suppressed NAFLD and alleviated steatosis in HepG2 cells induced by oleic acid (OA). In addition, PS-ALA promoted mitochondrial biogenesis, enhanced mitochondrial fatty acid oxidation capacity, improved mitochondrial dynamics, and restored mitochondrial membrane potential. Moreover, PS-ALA reduced reactive oxygen species production both in the liver tissue of HFD-fed mice and OA-loaded HepG2 cells. At the molecular level, PS-ALA accelerated the phosphorylation of AMPK and increased the protein expression of peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) and nuclear NF-E2-related factor 2 (Nrf2). Furthermore, the stimulating effects of PS-ALA on the PGC-1α/Nrf1/Tfam pathway and Nrf2/HO-1 pathway as well as its mitochondrial biogenesis promotion effects and anti-oxidative activities were abrogated by the AMPK inhibitor in OA-treated HepG2 cells. In conclusion, the protective effects of PS-ALA on NAFLD appear to be associated with improving mitochondrial function and oxidative stress via activating AMPK signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ésteres/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fitosteróis/uso terapêutico , Ácido alfa-Linolênico/química , Animais , Dieta Hiperlipídica , Ativação Enzimática/efeitos dos fármacos , Ésteres/química , Células Hep G2 , Humanos , Fígado/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/fisiologia , Mitocôndrias Hepáticas/ultraestrutura , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Fosforilação , Fitosteróis/química , Espécies Reativas de Oxigênio/análise , Transdução de Sinais/efeitos dos fármacos
19.
Nat Prod Res ; 35(6): 1042-1045, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31135223

RESUMO

Armillaria mellea, also known as Hazel mushroom, is a delicious food material and traditional herbal medicine in East Asia. Protoilludane sesquiterpenoid aromatic esters from A. mellea (PSAM) are the main active components with antibacterial and anticancer activities. This study explored the antidepressant-like activities of PSAM and its possible mechanisms of action using the open field test (OFT), tail suspension test (TST) and forced swimming test (FST) in mice for the first time. The results revealed that PSAM (1 mg/kg, i.p.) exhibited markedly antidepressant-like activity, which could be reversed by pretreatment with haloperidol (a non-selective D2 receptor antagonist), bicuculline (a competitive GABA antagonist), NMDA (an agonist at the glutamate site). Meanwhile, PSAM also effectively increased the hippocampus dopamine (DA) and γ-aminobutyric acid (GABA) and decreased the hippocampus glutamate (Glu) levels of mice, indicating that the antidepressant-like effect of PSAM might be mediated by the DAergic, GABAergic and Gluergic systems.


Assuntos
Antidepressivos/uso terapêutico , Armillaria/química , Ésteres/uso terapêutico , Sesquiterpenos Policíclicos/uso terapêutico , Sesquiterpenos/uso terapêutico , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Dopamina/metabolismo , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Ácido Glutâmico/metabolismo , Elevação dos Membros Posteriores , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Teste de Campo Aberto , Sesquiterpenos Policíclicos/farmacologia , Reboxetina/farmacologia , Reboxetina/uso terapêutico , Natação , Ácido gama-Aminobutírico/metabolismo
20.
EMBO Mol Med ; 13(1): e13105, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33015938

RESUMO

The ongoing SARS-CoV-2 pandemic stresses the need for effective antiviral drugs that can quickly be applied in order to reduce morbidity, mortality, and ideally viral transmission. By repurposing of broadly active antiviral drugs and compounds that are known to inhibit viral replication of related viruses, several advances could be made in the development of treatment strategies against COVID-19. The nucleoside analog remdesivir, which is known for its potent in vitro activity against Ebolavirus and other RNA viruses, was recently shown to reduce the time to recovery in patients with severe COVID-19. It is to date the only approved antiviral for treating COVID-19. Here, we provide a mechanism and evidence-based comparative review of remdesivir and other repurposed drugs with proven in vitro activity against SARS-CoV-2.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacologia , Alanina/uso terapêutico , Amidas/farmacologia , Amidas/uso terapêutico , Antivirais/farmacologia , Benzamidinas , Reposicionamento de Medicamentos/métodos , Ésteres/farmacologia , Ésteres/uso terapêutico , Guanidinas/farmacologia , Guanidinas/uso terapêutico , Guanina/farmacologia , Guanina/uso terapêutico , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Lopinavir/farmacologia , Lopinavir/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Ritonavir/farmacologia , Ritonavir/uso terapêutico , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA